
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.9 SEPTEMBER 2003
1577

PAPER Special Issue on Parallel and Distributed Computing, Applications and Technologies

Efficient and Scalable Client Clustering for Web Proxy

Cache

Kyungbaek KIM† and Daeyeon PARK†, Nonmembers

SUMMARY Many cooperated web cache systems and pro-
tocols have been proposed. These systems, however, require ex-
pensive resources, such as external bandwidth and CPU power
or storage of a proxy, while inducing hefty administrative costs
to achieve adequate client population growth. Moreover, a scal-
ability problem in the cache server management still exists. This
paper suggests peer-to-peer client-clustering. The client-cluster
provides a proxy cache with backup storage which is comprised
of the residual resources of the clients. We use DHT based peer-
to-peer lookup protocol to manage the client-cluster. With the
natural characteristics of this protocol, the client-cluster is self-
organizing, fault-tolerant, well-balanced and scalable. Addition-
ally, we propose the Backward ICP which is used to communi-
cate between the proxy cache and the client-cluster, to reduce the
overhead of the object replication and to use the resources more
efficiently. We examine the performance of the client-cluster via
a trace driven simulation and demonstrate effective enhancement
of the proxy cache performance.
key words: peer-to-peer, clustering, web caching, cooperated
caching

1. Introduction

The recent increase in popularity of the Web has led
to a considerable increase in the amount of Internet
traffic. As a result, the Web has now become one of
the primary bottlenecks to network performance and
web caching has become an increasingly important is-
sue. Web caching aims to reduce network traffic, server
load, and user-perceived retrieval delay by replicat-
ing popular content on caches that are strategically
placed within the network. Browser caches reside in
the clients’ desktop, and proxy caches are deployed on
dedicated machines at the boundary of corporate net-
work and Internet service providers.

By caching requests for a group of users, a proxy
cache can quickly return documents previously accessed
by other clients. Using only one proxy cache has lim-
ited performance, because the hit rate of the proxy is
limited by the cache storage and the size of the client
population. That is, if a cache is full and needs space
for new documents, it evicts the other documents and
it will retrieve the evicted documents from the Internet
for other requests. In Fig. 1 (a), if the square object is

Manuscript received December 4, 2002.
Manuscript revised March 11, 2003.

†The authors are with Department of Electrical Engi-
neering and Computer Science [Division of Electrical Engi-
neering], Korea Advanced Institute of Science and Technol-
ogy, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305–701,
Republic of Korea.

(a) Initial situation (b) After square is evicted
from Proxy 1

(c) After square is evicted from Proxy 1 and stored at client C

Fig. 1 Request and response path when client A requests the
square object in Proxy 1.

evicted, the proxy cache obtains it from the Internet.
But if the near proxy cache has a square object like that
in Fig. 1 (b), Proxy 1 can obtain it from Proxy 2 and re-
duce the latency and the Internet traffic. According to
this procedure, multiple proxies should cooperate with
each other in order to increase the total client popu-
lation, improve hit ratios, and reduce document-access
latency; that is the cooperative caching.

Various cooperative caching systems have been
proposed in [1]–[5]. However, these techniques need
high bandwidth, expensive infrastructure and high ad-
ministrative cost. ICP-based cooperative caches com-
municate with other caches that are connected by busy
core-links, which are the inter-proxy links, to find and
obtain requested objects in other caches. Even if the
requested objects are not in these caches, they spend
bandwidth of core-links in order to find the objects.
Some cooperative caches use the proxy cluster, as a
single large cache so as to be overprovisioned to handle
bursty peak loads. However, this approach still needs
too much administrative cost for the frequent variation
of clients. For example, a growth in client population
necessitates increasing the cluster size and updating the
cluster information.

In this paper, we suggest a new web caching system
which uses the residual resources of clients. In Fig. 1 (c),
not only the proxy cache but also the clients are respon-



1578
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.9 SEPTEMBER 2003

sible for storing objects; the proxy cache stores more
popular objects and the client-cluster stores evicted ob-
jects from the proxy cache. That is, the client-cluster
is used as a backup storage for the proxy cache. In this
case, Client A can get the square object from Client
C, which is inside the network, not outside of it. This
behavior reduces the usage of core-links and improves
the performance of the proxy cache, in terms of the hit
rate, the byte hit rate and the reduced latency. Fur-
thermore, the size of the backup storage of the proxy
increases as more clients use the proxy. According to
this feature, this approach reduces the administrative
cost and makes the proxy cache more scalable.

The client-cluster is composed of the clients’ resid-
ual resources. Since the clients join and leave dynam-
ically, in order to use its storage efficiently, the client-
cluster must be self-organizing and fault tolerant and
the load of each client should be balanced. To meet
these requirements, we manage the client-cluster by
using DHT (Distributed Hash Table) based peer-to-
peer protocol. By using this protocol, all clients re-
ceive roughly the same load because the hash function
balances load with high probability. Additionally, the
proxy cache does not need to gather the client informa-
tion and we reduce administrative cost.

This protocol is responsible for the routing of the
object, but it needs to cope with updating the object
whenever clients join or leave. Typically, we can repli-
cate the object. However, this approach leads to ex-
tremely large traffic overhead and wasted storage. To
reduce this overhead, we suggest the Backward ICP
which is responsible for storing and finding objects in
a manner similar to replication. A proxy saves objects
to a client-cluster and gets objects from it by using this
protocol.

When a proxy cache sends requests to a client-
cluster and the requested objects are not stored in it,
the proxy cache takes on additional latency. To prevent
this latency, we use the cache summary with a Bloom
filter, which determines whether the requested objects
are in the client-cluster.

This paper is organized as follow. In Sect. 2, we de-
scribe cooperated web caching and peer-to-peer lookup
algorithm briefly. Section 3 introduces the detail of
the peer-to-peer client-clustering. The simulation envi-
ronment and the performance evaluation are given in
Sect. 4. We mention other related works in Sect. 5. Fi-
nally, we conclude in Sect. 6.

2. Background

2.1 Cooperated Web Caching

The basic operation of the web caching is simple. Web
browsers generate HTTP GET requests for Internet
objects such as HTML pages, images, mp3 files, etc.
These are serviced from a local web browser cache, web

proxy caches, or an original content server - depending
on which cache contains a copy of the object. If re-
quested objects are in a web browser cache, the client
does not need to send GET requests. Otherwise, the
client sends GET requests to web proxy caches. If a
cache closer to the client has a copy of the requested
object, we reduce more bandwidth consumption and
decrease more network traffic. Hence, the cache hit
rate should be maximized and the miss penalty, which
is the cost when a miss occurs, should be minimized
when designing a web caching system.

The performance of a web caching system depends
on the size of its client community. As the user com-
munity increases in size, so does the probability that
a cached object will soon be requested again. Caches
sharing mutual trust may assist each other to increase
the hit rate. A caching architecture should provide the
paradigm for proxies to cooperate efficiently with each
other. One approach to coordinate caches in the same
system is to set up a caching hierarchy. With hier-
archical caching, caches are placed at multiple levels of
the network. Another approach is a distributed caching
system, where there are only caches at the bottom level
and there are no other intermediate cache levels. In a
hybrid scheme, caches may cooperate with other caches
at the same level or at a higher level.

ICP (Internet Cache Protocol) [1] is a typical coop-
erating protocol for a proxy to communicate with other
proxies. If a requested object is not found in a local
proxy, the proxy sends ICP queries to neighbor prox-
ies; sibling proxies and parent proxies. Each neighbor
proxy receives the queries and sends ICP replies with-
out concern about existence of the object. If the local
proxy receives an ICP reply with the object, it uses that
reply. Otherwise, the local proxy forwards the request
to the parent proxy. ICP wastes expensive resources;
core-link and cache storage. Even if the neighbor caches
do not have the requested object, ICP uses the core-
links between proxies, which are used for many clients
and are bottlenecks of the network bandwidth. An-
other protocol for cooperated caching is CARP (Cache
Array Routing Protocol) [2], which divides the URL-
space among an array of loosely coupled caches and
lets each cache store only the objects whose URL are
hashed to it. For this feature, every request is hashed
and forwarded to a selected cache node. In this scheme,
clients must know the cache array information and the
hash function, making the management of CARP dif-
ficult. Additionally, there are other issues such as load
balancing and fault tolerance.

Another problem of CARP, as well as ICP, is scal-
ability of management. Large corporate networks often
employ a cluster of machines, which generally must be
overprovisioned to handle burst peak loads. A growth
in user population creates a need for hardware up-
grades. This scalability issue cannot be solved by ICP
or CARP.



KIM and PARK: EFFICIENT AND SCALABLE CLIENT CLUSTERING FOR WEB PROXY CACHE
1579

2.2 Peer-to-Peer Lookup

Peer-to-peer systems are distributed systems without
any centralized control or hierarchical organization,
where the software running at each node is equivalent in
functionality; this includes redundant storage, selection
of nearby servers, anonymity, search, and hierarchical
naming. Among these features, lookup for a data is an
essential functionality for peer-to-peer systems.

A number of peer-to-peer lookup protocols have
been recently proposed, including Pastry [6], Chord [7],
CAN [8] and Tapestry [9]. In a self-organizing and de-
centralized manner, these protocols provide a DHT
(distributed hash-table) that reliably maps a given ob-
ject key to a unique live node in the network. Because
DHT is made by a hash function that balances load
with high probability, each live node has the same re-
sponsibility for data storage and query load. If a node
wants to find an object, a node simply sends a query
with the object key corresponding to the object to the
selected node determined by the DHT. Typically, the
length of routing is about O(log n), where n is the num-
ber of nodes. According to these properties, peer-to-
peer systems balance storage and query load, transpar-
ently tolerate node failures and provide efficient routing
of queries.

3. Peer-to-Peer Client-Clustering

3.1 Overview

As we described in the previous section, the use of only
a proxy cache has a performance limitation because of
potential growth in client population. Even if proxy
caches cooperate with each other to enhance perfor-
mance, high administrative cost and scalability issues
still exist. To improve the performance of the cache
system and solve the scalability issues, we exploit the
residual resources of clients for a proxy cache. That is,
any client that wants to use the proxy cache provides
small resources to the proxy and the proxy uses these
additional resources to maintain the proxy cache sys-
tem. This feature makes the system resourceful and
scalable.

We use the residual resources of clients as a backup
storage for the proxy cache. While a conventional
proxy cache drops evicted objects, our proxy cache
stores these objects to the backup storage, which is dis-
tributed among the client-cluster. When a client sends
a GET request to a proxy cache, it checks its local stor-
age. If a hit occurs, it returns the requested object; oth-
erwise, it sends a lookup message to the backup storage
and this message is forwarded to the client that has re-
sponsibility for storing the object. If the client has the
object, it returns the object to the proxy; otherwise,
the proxy gets the object from the original server or

other proxy caches. This interaction between the proxy
cache and the backup storage decreases the probability
of sending requests outside the network, reduces the us-
age of inter-proxy links, and increases the performance
of the proxy cache.

3.2 Client-Cluster Management

In our scheme, a proxy cache uses the resources of
clients that are in the same network. Generally, if a peer
wants to use other peers, it should have information
about those. This approach is available when the other
peers are reliable and available. However, the client
membership is very large and changes dynamically. If
the proxy cache manages the states of all clients, too
much overhead is created to manage the client infor-
mation and complex problems such as fault-tolerance,
consistency and scalability arise. In consideration of
these issues, we establish the proxy cache such that it
has no information for the clients and the client-cluster
manages itself.

We design the client-cluster by using DHT (dis-
tributed hash table) based peer-to-peer protocol [6], [7].
To use this protocol, each client needs an application
whose name is Station. A Station is not a browser or
a browser cache, but a management program to pro-
vide clients’ resources for a proxy cache. A client can
not use resources of a Station directly, while a proxy
cache sends requests issued from clients to Stations in
order to use resources of a client-cluster. When a Sta-
tion receives requests from a proxy cache, it forwards
requests to another Station or checks whether it has
the requested objects. Each Station has a unique node
key and a DHT. The unique node key is generated by
computing the SHA-1 hash of the client identifier, such
as an ip address or an ethernet address, and the object
key is obtained by computing the SHA-1 of the corre-
sponding URL. The DHT describes the mapping of the
object keys to responsible live node keys for efficient
routing of request queries. It is similar to a routing ta-
ble in a network router. A Station uses this table with
the key of the requested object to forward the request
to the next Station. Additionally, the DHT of a Station
has the keys of neighbor Stations which are numerically
close to the Station, like the leaf nodes in PASTY or
the successor list in CHORD.

The basic operation of the lookup in a client-
cluster is shown in Fig. 2. When a proxy cache sends
a request query to one Station of a client-cluster, the
Station gets the object key of the requested object and
selects the next Station according to the DHT and the
object key. Finally, the home Station, which is a Sta-
tion having the numerically closest node key to the re-
quested object key among all currently live nodes, re-
ceives the request and checks whether it has the object
in local cache. If a hit occurs, the home Station re-
turns the object to the proxy cache; otherwise, it only



1580
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.9 SEPTEMBER 2003

returns a null object. In Fig. 2, the node whose key
is 07200310 is the home Station for the object whose
key is 07100470. The cost of this operation is typically
O(log n), where n is the total number of Stations. If
1000 Stations exist, the cost of lookup is about 3, and if
100000 Stations, the cost is about 5. Since the RTT for
any server in the Internet from one client is 10 or 100
times bigger than that for another client in the same
network, we reduce the latency for an object by 2 or 20
times when we obtain the object in the client-cluster.

The client-cluster can cope with frequent vari-
ations in client membership by using this protocol.
Though the clients dynamically join and leave, the lazy
update for managing the small information of the mem-
bership changes does not spoil the lookup operation of
this protocol. When a Station joins the client-cluster,
it sends a join message to any one Station in the client-
cluster and gets new DHT and other Stations to up-
date their DHT for the new Station lazily. On the
other hand, when a Station leaves or fails, other Sta-
tions, which have a DHT mapping with the departing
Station, detect the failure of it lazily and repair their
DHT. According to this feature, the client-cluster is
self-organizing and fault-tolerant.

The proxy cache stores the evicted objects to a par-
ticular Station in the client-cluster by using this lookup
operation. All Stations have roughly the same amount
of objects, because the DHT used for the lookup oper-
ation provides a degree of natural load balance. More-
over, the object range, which is managed by one Sta-
tion, is determined by the number of live nodes. That

Fig. 2 Basic lookup operation in the client-cluster. In this fig-
ure, total hop count is 3 for an object.

(a) Store message (b) Lookup message

Fig. 3 Two types of Backward ICP message.

is, if there are few live nodes, the object range is large;
otherwise, it is small. According to this, when the client
membership changes, the object range is resized auto-
matically and the home Stations for every object are
changed implicitly.

As described, the routing information and the ob-
ject range are well managed by this protocol. Conse-
quently, after updating the information for variation in
the client membership, future requests for an object will
be routed to the Station that is now numerically clos-
est to the object key. If the objects for the new home
Station are not moved, subsequent requests miss the
objects. According to these misses, the performance of
a client-cluster decreases remarkably. We can replicate
the objects to neighbor Stations to prevent such misses.
This approach ensures the reliability of the objects, but
leads to serious traffic overhead and inefficient storage
usage. To reduce this overhead and use the storage effi-
ciently, we store and lookup objects using the Backward
ICP. This is described in the next section.

3.3 Backward ICP

The Backward ICP, which is a communication protocol
between the proxy cache and the client-cluster, is simi-
lar to the ICP used between the proxy caches. However,
the Backward ICP uses a local area network rather than
an inter-proxy link.

There are two types of messages in the Backward
ICP, as shown in Fig. 3. One is a Store message and the
other is a Lookup message. A Store message is used to
store evicted objects from a proxy cache. The proxy
cache sends a Store message and the evicted object
to the home Station and the home Station replicates
the objects to the replication set, which is composed of
neighbor Stations. Before sending a Store message for
an evicted object, the proxy cache checks the Backup bit
of the evicted object. This Backup bit is used to prevent
duplicated storage of an object that is already in the
client-cluster. If the Backup bit is set to 1, the proxy
cache knows that the client-cluster has this evicted ob-
ject and drops this object immediately. If the bit is set
to 0, the proxy cache backs up the evicted object to
the client-cluster. When the proxy cache gets the ob-
ject from the client-cluster, this bit is set to 1. When
the object is refreshed or returned from the original



KIM and PARK: EFFICIENT AND SCALABLE CLIENT CLUSTERING FOR WEB PROXY CACHE
1581

server, this bit is set to 0.
A Lookup message is used to find objects in the

client-cluster. When the proxy cache sends a Lookup
message to the home Station, this Station returns the
object to the proxy cache if it has the requested object.
Otherwise, if a miss occurs, it sends Lookup messages
to the replication set simultaneously and waits for a
response from any Station. If the object is somewhere
among the replication set, the home Station stores this
object and returns this to the proxy cache; otherwise, it
returns a null object. Following this, the home Station
replicates the object to the replication set, except the
responding Station.

This protocol replicates objects only at the time
when they are stored or a lookup miss occurs. It re-
duces traffic overhead incurred by object replications.
Moreover, it uses storage efficiently by giving more op-
portunities to retrieve popular objects. The first time
when any object is stored, the object is replicated to in-
crease the probability of accessing the object. As time
goes by, popular objects are requested more than other
objects and they are replicated again to increase the
probability.

3.4 Cache Summary

When the proxy cache does not have an object in local
cache, it finds the object in the client-cluster. If the ob-
ject is not in the client-cluster, the proxy cache suffers
from additional latency by routing in the client-cluster.
To prevent this latency, the proxy can have a summary
of the objects in the client-cluster. We use a Bloom fil-
ter as the summary of the client-cluster. A Bloom filter
is a method for representing a set A = a1, a2, . . . , an

of n elements to support membership queries. The
idea is to allocate a vector v of m bits, initially all set
to 0, and then choose k independent hash functions,
h1, h2, . . . hk, each with range 1, . . . , m. For each ele-
ment a ∈ A, the bits at positions h1(a), h2(a), . . . , hk(a)
in v are set to 1. Given a query for b we check the bits
at position h1(b), h2(b), . . . , hk(b). If any of them is 0,
then certainly b is not in the set A. More details and
other applications can be found in [5].

For a Bloom filter to represent the objects in the
client-cluster, when the proxy cache evicts the object
to the client-cluster we insert a key for the object to
the filter; when the proxy cache misses the object in
the client-cluster we delete the key from the filter. We
maintain for each location l in the bit array a count c(l)
of the number of times that the bit is set to 1. All counts
are initially 0. When a key a is inserted or deleted, the
counts c(h1(a)), c(h2(a)), . . . , c(hk(a)) are incremented
or decremented accordingly. When a count changes
from 0 to 1, the corresponding bit is turned on. When
a count changes from 1 to 0, the corresponding bit is
turned off.

3.5 Cache Refreshness

All cached objects can be refreshed to contain the latest
data. Typically, an IMS (If Modified Since) message is
used to check if the object has the latest content. If only
the proxy cache is used, the validation of the objects
is checked by simple IMS methods. If the proxy cache
uses the client-cluster, the validation of the objects in
the client-cluster are checked only when the proxy cache
looks up these objects. According to this procedure, if a
proxy cache looks up an object that is stale in the client-
cluster, the home Station returns this object with the
IMS query and the proxy cache sends the IMS query
to the original server. If the object is not changed,
the proxy cache keeps this object. Otherwise, if the
response notifies that it is modified with the new object,
the proxy cache stores this new object and sets the
Backup bit to 0 in order to update this modification
to the old object in the client-cluster lazily. By using
this scheme, the Stations do not have to be concerned
about staleness of objects.

4. Performance Evaluation

In this section, we present the results of extensive trace
driven simulations that we have conducted to evalu-
ate the performance of our cache system. We design
our proxy cache simulator to conduct the performance
evaluation. This simulator illustrates the behavior of a
proxy cache and client-cluster. We have assumed that
we simulate the behavior of a proxy cache effectively.
The proxy cache is error-free and does not store non-
cachable objects: dynamic data, larger size data than
total cache storage, control data, etc. We also assume
that there are not any problems in the network, such as
congestions and overflow buffers. The size of a proxy
cache is in the range from 0.5 MByte to 500 MBytes.
Each client uses one Station which has the storage, from
10 MBytes to 30 MBytes.

4.1 Traces Used

In our trace-driven simulations we use traces from
KAIST, which uses a class B ip address for the network.
The trace from the proxy cache in KAIST contains over
3.4 million requests in a single day. We have run our
simulations with traces from this proxy cache since Oc-
tober, 2001. We show some of the characteristics of
these traces in Table 1. Note that these characteristics
are the results when the cache size is infinite. How-
ever, our simulations assume limited cache storage and
ratios including hit rate and byte hit rate cannot be
higher than infinite-hit rate and infinite-byte hit rate,
which are the hit rate and the byte hit rate when the
infinite cache is used.



1582
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.9 SEPTEMBER 2003

(a) Trace 1 (b) Trace 2

Fig. 4 Total external bandwidth usage with various client size.

Table 1 Traces used in our simulation.

Traces Trace 1 Trace 2

Measuring day 2001.10.08 2001.10.09
Requests size 9.02GB 11.66GB
Objects size 3.48GB 1.38GB

Request number 699280 698871
Object number 215427 224104
Hit Rate 69.19% 67.93%

Byte Hit Rate 63.60% 57.79%

4.2 External Bandwidth

We define external bandwidth as the number of bytes
transfered between the proxy cache and the original
servers. This bandwidth, which uses the core-link of
the proxy cache, should be of a small value for good
performance of the Internet and the proxy cache. We
compare external bandwidth savings achieved by using
the client-cluster with a variable proxy cache storage.
We assume that each client provides 10 Mbyte storage
to the proxy server.

Figure 4 shows the external bandwidth in MBs
over the entire period of each trace against different
sizes of the client number. In this figure, back n means
that the proxy cache has a storage of n hundred MBs
and uses the client-cluster. No Cache and Infinite
Cache represent the external bandwidth if no cache is
used, and if a cache which has infinite storage is used,
respectivley. The difference between the two values de-
notes the maximum external bandwidth reduction that
web caching obtains.

When there is no member in the client-cluster and
the proxy cache only serves clients, we can reduce the
external bandwidth. However, if we want to reduce
the bandwidth further, we should increase the size of
the proxy cache storage. On the other hand, by using
the client-cluster, if more clients provide resources to
the proxy cache, external bandwidth is further reduced.
These results strongly indicate the client-cluster is scal-
able and reduce the administrative cost of the proxy
cache.

4.3 Hit Rate and Byte Hit Rate

Figures 5 and 6 show a comparison of the hit rate and
the byte hit rate. By the hit rate, we mean the number
of requests that hit in the proxy cache as a percentage
of total requests. A higher the hit rate means the proxy
cache can handle more requests and the original server
must deal with proportionally lighter load of requests.
The byte hit rate is the number of bytes that hit in the
proxy cache as a percentage of total number of bytes
requested. A higher byte hit rate results in a greater
decrease in network traffic on the server side.

In the figures, cent means using only a proxy cache
and back n means using the client-cluster with n hun-
dreds clients. The hit rate of only the proxy cache is
greatly affected by the cache size, but the hit rate of
using the client-cluster achieves nearly an infinite-hit
rate without any relationship to the proxy cache size.
This is achieved by the plentiful resources provided by
the clients. That is, though the proxy cache size is
limited, the storage of the client-cluster is sufficient to
store evicted objects and the proxy cache gets almost
all requested objects from the client-cluster.

For the byte hit rate, we can obtain a similar result
as that for the hit rate. However, in this case, using
the client-cluster does not yield infinite-byte hit rate,
particularly with a small proxy cache size. The rea-
son for this result is the different sizes of the objects.
Though each client have roughly the same amount of
objects, some clients that usually have large objects
cannot store many objects, and the hit rate and the
byte hit rate decrease. In particular, large size objects
whose size is bigger than that of one client storage,
which is the Station’s storage, 10 MB, are not stored
on the client-cluster and the byte hit rate decreases re-
markably.

To examine this feature, we run a simulation with a
fixed client number, 100, and various sizes of client stor-
age, 20 MB and 30 MB. The results of this simulation
are shown in Fig. 7, which provides a comparison of the
byte hit rate. If an individual client storage increases,
the byte hit rate increases slightly. This strongly indi-
cate that the different sizes of objects, and especially



KIM and PARK: EFFICIENT AND SCALABLE CLIENT CLUSTERING FOR WEB PROXY CACHE
1583

(a) Trace 1 (b) Trace 2

Fig. 5 Hit rate comparison between only proxy cache (cent) and client-cluster (back-n).

(a) Trace 1 (b) Trace 2

Fig. 6 Byte hit rate comparison between only proxy cache (cent) and client-cluster
(back-n).

(a) Trace 1 (b) Trace 2

Fig. 7 Byte hit rate comparison with various client storage.

large objects, affects the byte hit rate. If the client-
cluster stores these large objects well, both the hit rate
and the byte hit rate achieve an infinite-hit rate and
infinite-byte hit rate for a proxy cache.

4.4 Client Size Effect

In this section, we show scalability of the client-
clustering. We assume every 100 clients makes 0.35
million requests and simulate with variable client num-
ber. The results are shown in Fig. 8 and Fig. 9 where
the cent n indicates use of only a proxy cache whose
size is n hundreds MB and the back n means the proxy
cache and the client-cluster are used.

In the results, the hit rate when only the proxy
cache is used does not increase markedly. Even in Trace
2, the hit rate decreases. However, when a proxy cache

uses the client-cluster, the hit rate increases by 30-40%
over that when only the proxy cache is used. Addi-
tionally, as the client number increases, the hit rate
increases accordingly. For the byte hit rate, when the
proxy cache uses the client-cluster, the byte hit rate in-
creases by 20-30% over that when only the proxy cache
is employed. When the client number is 300, the byte
hit rate with the client-cluster is the same or higher
than that with only the proxy cache and when the client
number is 400, the byte hit rate with the client-cluster
is much higher.

According to these results, when client population
grows, using only a proxy cache should take on adminis-
trative cost to provide sufficient service to clients. How-
ever, using the client-cluster does not need any manage-
ment cost to handle the growth in client population.



1584
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.9 SEPTEMBER 2003

(a) Trace 1 (b) Trace 2

Fig. 8 Hit rate comparison with various client number.

(a) Trace 1 (b) Trace 2

Fig. 9 Byte hit rate comparison with various client number.

Table 2 Summary of client loads for Trace 1 with the 200MB
proxy.

Client number Mean Req. Max Req. Dev.

100 1024 1369 2.2
200 602 733 2.4
300 401 510 2.5

Mean Byte Req. Max. Byte Req. Dev.

100 13422KB 316805KB 11.1
200 6711KB 315158KB 12.1
300 4474KB 314197KB 12.9

Consequently, the client-cluster is scalable.

4.5 Client Load

We examine the client loads, which include the request
number, storage size, stored objects, hit rate, etc, to
verify that the client-cluster balances the storage and
request queries. Table 2 shows a summary of the re-
quest number and the sizes of the requested objects.
Each client receives roughly the same load, and when
the client number increases the load of each client de-
creases. The properties of DHT-based peer-to-peer pro-
tocols account for these findings. For the byte request,
we again see the effect of the different sizes of the ob-
jects, which we strongly believe account for the perfor-
mance degradation.

5. Related Works

Cooperative web caching has been found to be use-

ful in improving hit rate in a group of small organi-
zations. There are many forms of cooperative caching,
such as hierarchical web caching [1], hash-based cluster-
ing [2] and directory-based scheme [5]. These methods
are efficient but they need high resources and induce
high administrative costs to improve the utility and the
scalability of the caching system. On the other hand, in
our scheme, the client-cluster is composed of the resid-
ual resources of the clients and scalability is a natural
characteristic of the client-cluster.

Many peer-to-peer applications such as Napster,
Kazza and Morpheus have become popular. Ad-
ditionally, large area file systems using peer-to-peer
have been proposed, including PAST [12], CFS [13] and
OceanStore [11]. The target of these systems, however,
is a wide area network, and they address issues of the
characteristics of web objects such as size, popularity
and update frequency.

A similar proposal for our approach appeared
in Squirrel [10], which described a decentralized web
browser cache. Squirrel fully distributes the web caches
storage among the browser cache of clients. Hence,
when the availability of clients is asymmetric, some
clients decrease the total performance of the Squirrel
network. Additionally, all contents are distributed and
it is hard to manage the objects according to the char-
acteristics of web objects. In our scheme, a web object
is assigned to the proxy cache or the client-cluster ac-
cording to the popularity of the object, which optimizes
the overall performance of the proxy cache.



KIM and PARK: EFFICIENT AND SCALABLE CLIENT CLUSTERING FOR WEB PROXY CACHE
1585

6. Conclusions

In this paper, we propose and evaluate peer-to-peer
client-clustering, which is used as a backup storage for
the proxy cache. The proxy cache with this client-
cluster is highly scalable and more efficient, and has
low administrative cost. Even if the clients take the
load, this load has been verified on a range of real
workloads to be low. Moreover, the utility of the client-
cluster can be improved by managing objects according
to their properties such as size, popularity and update
frequency. We can extend the usage of the client-cluster
to other proxy systems. If a proxy performs demanding
jobs such as encoding/decoding and complex calcula-
tion for many clients, it can use the residual resources
of the clients to accomplish these tasks.

References

[1] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F.
Schwartz, and K.J. Worrell, “A hierarchical internet object
cache,” Proc. 1996 USENIX Technical Conference, pp.153–
163, Jan. 1996.

[2] J. Cohen, N. Phadnis, V. Valloppillil, and K.W. Ross,
“Cache array routing protocol v1.0,” http://www.ietf.org/
internet-drafts/draft-vinod-carp-v1-03.txt, Sept. 1997.

[3] A. Wolman, G.M. Voelker, N. Sharma, N. Cardwell, A.
Karlin, and H.M. Levy, “On the scale and performance of
cooperative web proxy caching,” Proc. 17th ACM Sympo-
sium on Operating Systems Principles, pp.16–31, Dec. 1999.

[4] J. Wang, “A survey of web caching schemes for the Inter-
net,” ACM Computer Communication Review, pp.36–46,
Oct. 1999.

[5] L. Fan , P. Cao, J. Almeida, and A.Z. Broder, “Summary
cache: A scalable wide-area web cache sharing protocol,”
Proc. ACM SIGCOMM 1998, pp.254–265, Sept. 1998.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems,” Proc. 18th ACM Conference on Distributed Sys-
tems Platforms, pp.329–350, Nov. 2001.

[7] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup ser-
vice for Internet applications,” Proc. ACM SIGCOMM
2001, pp.149–160, Aug. 2001.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, “A scalable content-addressable network,” Proc.
ACM SIGCOMM 2001, pp.161–172, Aug. 2001.

[9] B.Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing,” UCB Technical Report UCB/CSD-01-114, 2001.

[10] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A decen-
tralized peer-to-peer web cache,” Proc. Principles of Dis-
tributed Computing 2002, pp.213–222, July 2002.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R.
Gumadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells,
and B. Zhao, “OceanStore: An architecture for global-scale
persistent storage,” Proc. ACM ASPLOS 2000, pp.190–201,
Nov. 2000.

[12] P. Druschel and A. Rowstron, “PAST: A large-scale, persis-
tent peer-to-peer storage utility,” Proc. HotOS VIII, pp.75–
80, May 2001.

[13] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I.
Stoica, “Wide-area cooperative storage with CFS,” Proc.

18th ACM Symposium on Operating Systems Principles,
pp.202–215, Oct. 2001.

Kyungbaek Kim received his B.S.
degree and M.S. degree in electrical engi-
neering from the Korea Advanced Insti-
tute of Science and Technology (KAIST)
in 1999 and 2001, respectively. Cur-
rently he is a Ph.D. candidate at KAIST
in Korea. His research interests in-
clude operating system, distributed sys-
tem, world wide web, peer-to-peer algo-
rithm/network and overlay multicast.

Daeyeon Park received his B.S.
and M.S. degrees in computer science
from University of Oregon, USA, in 1989
and 1991, respectively and Ph.D. de-
gree in computer science from University
of Southern Califonia, USA, 1996. He
worked at Hankuk University of Foreign
Studies from 1996 to 1997. He joined the
Department of Electrical Engineering at
KAIST in 1998, where he is currently an
Assistant Professor. His major interests

include operating system, distributed system, parallel process-
ing, and computer architecture. He is a member of KIEE, KISS,
and IEEE.


